

 KLNCIT

 CLASS TEST QUESTION

Format No.:ACD11A-I

Issue No. :01

Rev No. :00

Subject Code/Subject Name : CS6301 – Programming and Class test No. : I

 Datastructures –II

Year and Branch : II & IT Total marks : 25

Date : 18.07.2017 Duration : 50mins

I. Course outcomes, Question Number, Marks

 COs CO1 CO2 CO3 CO4 CO5

Q.Nos 1,2,3,4,5,6(a)/6(b)

Marks (Max) 25

II. Knowledge skill outcomes

Level
Remember

(K1)

Understand

(K2)

Apply

(K3)

Analysis

(K4)

Evaluate

(K5)

Create

(K6)

Q.Nos 1,2,5 3,4,6(a)/6(b)

Marks

(Max)
6

4,15/15

19/19

 PART – A 5 × 2 = 10 Marks

Answer all the questions

1. Define Class and object with its syntax. (K1)

2. What are the applications of Object Oriented Programming? (K1)

3. Classify the Access Specifiers with an example. (K2)

4. Describe the significance of declaring member of a class static. (K2)

5. List the features of Object Oriented Programming. (K1)

 PART – B 1 × 15 = 15 Marks

6. (a) Illustrate with an example about constructor and Destructor. (K2)

 (OR)

 (b) Explain the concept of Pointers with an example. (K2)

 COURSE COORDINATOR ACADEMIC COORDINATOR HOD\IT

Roll No :

I – CLASS TEST KEY

Subject Code:CS6301 Class Test No:I

Subject Name:Programming and Datastructures II Total Marks:25

Year & Branch : II B.Tech IT Duration: 50mins

Date:18.07.2017

PART – A 5 × 2 = 10 Marks

Answer all the questions

1. Define Class and object with its syntax. (K1)

 Class:

 Class is a collection of data and member function.Class is C++ is a natural

 evolution of struct in C.

 Syntax:

 Class classname

 {

 Access specifier:

 Datatype var1,var2,…..,varn;

 Access specifier:

 Function declaration or Definition;

 };

Object:

Object is a instance of a class.

Objects are the basic run time entities in an object-oriented system. They may represent a person, a

place, a bank account, a table of data or any item that the program has to handle.

 Syntax:

 Classname Objetname;

2. What are the applications of Object Oriented Programming? (K1)

 Real-time system

 Simulation and modeling

 Object-oriented data bases

 Hypertext, Hypermedia, and expertext

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CIM/CAM/CAD systems

3. Classify the Access Specifiers with an example. (K2)

Public - The members declared as Public are accessible from outside the Class through

 an object of the class.

Protected - The members declared as Protected are accessible from outside the class but

 only in a class derived from it.

Private - These members are only accessible from within the class. No outside Access is

 allowed.

An Source Code Example:
class MyClass

{

 public:

 int a;

 protected:

 int b;

 private:

 int c;

};

int main()

{

 MyClass obj;

 obj.a = 10; //Allowed

 obj.b = 20; //Not Allowed, gives compiler error

 obj.c = 30; //Not Allowed, gives compiler error

}

4. Describe the significance of declaring member of a class static. (K2)

 Static Data Member: It is generally used to store value common to the whole class.

 The static data member differs from an ordinary data member in the following ways:

(i) Only a single copy of the static data member is used by all the objects.

(ii) It can be used within the class but its lifetime is the whole program.

 For making a data member static, we require:

(a) Declare it within the class.

(b) Define it outside the class.

5. List the features of Object Oriented Programming. (K1)

 Objects

 Classes

 Data abstraction and encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message passing

 PART – B 1 × 15 = 15 Marks

6. (a) Illustrate with an example about constructor and Destructor. (K2)
 A constructor (having the same name as that of the class) is a member function which is automatically used

to initialize the objects of the class type with legal initial values. Destructors are the functions that are

complimentary to constructors. These are used to de-initialize objects when they are destroyed. A destructor is

called when an object of the class goes out of scope, or when the memory space used by it is de allocated with the

help of delete operator.

Declaration and Definition of a Constructor:-

It is defined like other member functions of the class, i.e., either inside the class definition or outside the class

definition.

For example, the following program illustrates the concept of a constructor :

//To demonstrate a constructor

#include <iostram.h>

#include <conio.h>

Class rectangle

{

private :

float length, breadth;

public:

rectangle ()//constructor definition

{

//displayed whenever an object is created

cout<<”I am in the constructor”;

length-10.0;

breadth=20.5;

}

float area()

{

return (length*breadth);

}

};

void main()

{

clrscr();

rectangle rect; //object declared

cout<<”\nThe area of the rectangle with default parameters is:”<<rect.area()<<”sq.units\n”;

getch();

}

SPECIAL CHARACTERISTICS OF CONSTRUCTORS

These have some special characteristics. These are given below:

(i) These are called automatically when the objects are created.

(ii) All objects of the class having a constructor are initialized before some use.

(iii) These should be declared in the public section for availability to all the functions.

(iv) Return type (not even void) cannot be specified for constructors.

(v) These cannot be inherited, but a derived class can call the base class constructor.

(vi) These cannot be static.

(vii) Default and copy constructors are generated by the compiler wherever required. Generated

constructors are public.

(viii) These can have default arguments as other C++ functions.

(ix) A constructor can call member functions of its class.

(x) An object of a class with a constructor cannot be used as a member of a union.

(xi) A constructor can call member functions of its class.

(xii) We can use a constructor to create new objects of its class type by using the syntax.

Name_of_the_class (expresson_list)

For example,

Employee obj3 = obj2; // see program 10.5

Or even

Employee obj3 = employee (1002, 35000); //explicit call

(xiii) The make implicit calls to the memory allocation and deallocation operators new and delete.

(xiv) These cannot be virtual.

Declaration and Definition of a Destructor
The syntax for declaring a destructor is :

-name_of_the_class()

{

}

So the name of the class and destructor is same but it is prefixed with a ~

(tilde). It does not take any parameter nor does it return any value. Overloading a destructor is not

possible and can be explicitly invoked. In other words, a class can have only one destructor. A destructor can be

defined outside the class. The following program illustrates this concept :

//Illustration of the working of Destructor function

#include<iostream.h>

#include<conio.h>

class add

{

private :

int num1,num2,num3;

public :

add(int=0, int=0); //default argument constructor

//to reduce the number of constructors

void sum();

void display();

~ add(void); //Destructor

};

//Destructor definition ~add()

Add:: ~add(void) //destructor called automatically at end of program {

Num1=num2=num3=0;

Cout<<”\nAfter the final execution, me, the object has entered in the”

<<”\ndestructor to destroy myself\n”;

}

//Constructor definition add()

Add::add(int n1,int n2)

{

num1=n1;

num2=n2;

num3=0;

}

//function definition sum ()

Void add::sum()

{

num3=num1+num2;

}

//function definition display ()

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}

void main()

{

Add obj1,obj2(5),obj3(10,20): //objects created and initialized clrscr();

Obj1.sum(); //function call

Obj2.sum();

Obj3.sum();

cout<<”\nUsing obj1 \n”;

obj1.display(); //function call

cout<<”\nUsing obj2 \n”;

obj2.display();

cout<<”\nUsing obj3 \n”;

obj3.display();

}

5.6 Special Characteristics of Destructors

Some of the characteristics associated with destructors are :

(i) These are called automatically when the objects are destroyed.

(ii) Destructor functions follow the usual access rules as other member functions.

(iii) These de-initialize each object before the object goes out of scope.

(iv) No argument and return type (even void) permitted with destructors.

(v) These cannot be inherited.

(vi) Static destructors are not allowed.

(vii) Address of a destructor cannot be taken.

(viii) A destructor can call member functions of its class.

(ix) An object of a class having a destructor cannot be a member of a union.

 (OR)

 (b) Explain the concept of Pointers with an example. (K2)

 Pointers

 Pointers and Character Strings

 Pointer Arithmetic

 Pointers to Function

 Pointer to Object

 Pointer to Constant

 Constant Pointer

 Address-of operator (&)

The address of a variable can be obtained by preceding the name of a variable with an ampersand

sign (&), known as address-of operator. For example:

Dereference operator (*)

A variable which stores the address of another variable is called a pointer. Pointers are said to "point to"

the variable whose address they store.

baz = *foo;

The reference and dereference operators are thus complementary:

& is the address-of operator, and can be read simply as "address of"

* is the dereference operator, and can be read as "value pointed to by"

Declaring pointers

The declaration of pointers follows this syntax:
type * name;

Pointers and arrays

The concept of arrays is related to that of pointers. In fact, arrays work very much like pointers to their

first elements, and, actually, an array can always be implicitly converted to the pointer of the proper

type. For example, consider these two declarations:

1

2

int myarray [20];

int * mypointer;

The following assignment operation would be valid:

 mypointer = myarray;

Pointer initialization

Pointers can be initialized to point to specific locations at the very moment they are defined:

1

2

int myvar;

int * myptr = &myvar;

Pointer arithmetics

To conduct arithmetical operations on pointers is a little different than to conduct them on regular

integer types. To begin with, only addition and subtraction operations are allowed; the others make no

sense in the world of pointers. But both addition and subtraction have a slightly different behavior with

pointers, according to the size of the data type to which they point.

 foo = &myvar;

Suppose now that we define three pointers in this compiler:

1

2

3

char *mychar;

short *myshort;

long *mylong;

and that we know that they point to the memory locations 1000, 2000, and 3000, respectively.

Therefore, if we write:

1

2

3

++mychar;

++myshort;

++mylong;

Pointers and const

Pointers can be used to access a variable by its address, and this access may include modifying the value

pointed. But it is also possible to declare pointers that can access the pointed value to read it, but not to

modify it. For this, it is enough with qualifying the type pointed to by the pointer as const. For example:

int x;

int y = 10;

const int * p = &y;

x = *p; // ok: reading p

*p = x; // error: modifying p, which is const-qualified

Pointers to functions

C++ allows operations with pointers to functions. The typical use of this is for passing a function as an

argument to another function. Pointers to functions are declared with the same syntax as a regular

function declaration, except that the name of the function is enclosed between parentheses () and an

asterisk (*) is inserted before the name:

int (* minus)(int,int) = subtraction;

